UPPER RIO GRANDE WATER OPERATIONS MODEL: MODELING RESULTS

Presented by Leann Towne

Model simulations by Marc Sidlow, Don Gallegos,

And Nabil Shafike

Otowi Index Supply

Results: Dry Ten-Year Snowmelt Runoff Climate Sequence

Supplemental Water Needed for the Dry Sequence

How much storage water would be needed to meet flow targets each year of the sequence?

Results for the Dry Sequence

Question: Assuming 50,000 acre-feet of storage water was available initially and 8,000 acre-feet each year thereafter, when would the storage water be exhausted?

	Dry 10-year Hydrologic Sequence										
		Base			Concept A			Concept "B"			
Year	Native Flow at Otowi	Minnow BOY Storage	Minnow Release	Runout Month	Minnow BOY Storage	Minnow Release	Runout Month	Minnow BOY Storage	Minnow Release	Runout Month	
	Acre-feet	Acre-feet	Acre-feet		Acre-feet	Acre-feet		Acre-feet	Acre-feet		
1 2	682,500 713,400	50,000 41,600	4,900 23,900		50,000 43,100	3,300 8,200		50,000 22,100	32,900 12,500		
3	449,100	23,400	23,100	Apr	39,800	38,900	June	16,200	15,700	June	
4 5 6	296,500 713,400 713,400	7,900 7,900 7,900	7,900 7,600 7,500	RO RO RO	7,900 7,900 7,900	7,900 7,500 7,500	RO RO RO	7,900 7,900 12,100	7,700 2,900 5,800	RO	
7	416,900	8,000	7,900	RO	8,000	7,900	RO	13,100	12,700	RO	
8	449,100	5,100	5,100	RO	4,000	3,900	RO	4,800	4,700	RO	
9	449,100	7,400	7,300	RO	7,000	6,900	RO	7,300	7,200	RO	
10	296,500	7,900	7,900	RO	7,900	7,900	RO	7,900	7,700	RO	

Results: Average trending to Dry Ten-Year Snowmelt Runoff Climate Sequence

Supplemental Water Needed for Average/Dry Sequence

How much storage water would be needed to meet flow targets each year of the sequence?

Results for the Average/Dry Sequence

Question: Assuming 50,000 acre-feet of storage water was available initially and 8,000 acre-feet each year thereafter, when would the storage water be exhausted?

	Average/Dry 10-year Hydrologic Sequence										
		Base				Concept A		Concept "B"			
Year	Native Flow at Otowi	Minnow BOY Storage	Minnow Release	Runout Month	Minnow BOY Storage	Minnow Release	Runout Month	Minnow BOY Storage	Minnow Release	Runout Month	
		Acre-feet	Acre-feet		Acre-feet	Acre-feet					
1	1,183,500	50,000	3,000		50,000	3,000		50,000	11,200		
2	726,500	44,400	14,200		44,400	7,000		40,200	25,900		
3	1,067,800	36,100	2,200		43,000	2,300		20,700	10,400		
4	682,500	39,500	13,200		46,000	8,300		17,000	14,400		
5	713,400	31,500	28,400		42,400	13,900		9,400	6,400		
6	449,100	9,700	9,400	April	33,200	32,400	May	10,300	9,900	April	
7	296,500	8,100	8,100	RO	8,100	8,000	RO	8,100	7,900	RO	
8	713,400	7,900	7,500	RO	7,900	7,500	RO	7,900	2,900		
9	713,400	7,900	7,500	RO	7,900	7,500	RO	12,000	3,700		
10	416,900	8,000	7,900	RO	8,000	7,900	RO	14,800	14,200	RO	

Results: Wet Snowmelt Runoff Ten-Year Climate Sequence

Supplemental Water Needed for Wet Sequence

How much storage water would be needed to meet flow targets each year of the sequence?

Results of the Wet Sequence

Question: Assuming 50,000 acre-feet of storage water was available initially and 8,000 acre-feet each year thereafter, when would the storage water be exhausted?

	Wet 10-year Hydrologic Sequence									
		Base			Concept "A"			Concept "B"		
Year	Native Flow at Otowi	Minnow BOY Storage	Minnow Release	Runout Month	Minnow BOY Storage	Minnow Release	Runout Month	Minnow BOY Storage	Minnow Release	Runout Month
	Acre-feet	Acre-feet	Acre-feet		Acre-feet	Acre-feet		Acre-feet	Acre-feet	
1 2	1,103,200 1,805,900	50,000 36,200	12,700 10,900		50,000 36,200	12,700 10,900		50,000 47,100	1,400 -	
3	1,103,200	31,400	11,600		31,400	11,600		52,500	-	
4 5	1,239,000 1,392,200	26,300 9,400	23,500 9,400	April	26,300 9,400	23,500 9,400	April	53,100 52,800	-	
6	1,067,800	7,900	7,500	RO	7,900	7,500	RO	54,400	-	
7	2,169,100	7,900	7,700	RO	7,900	7,700	RO	52,000	-	
8	892,500	7,900	4,900		7,900	4,900		55,800	-	
9	699,000	10,200	9,800	RO	10,200	9,800	RO	56,200	-	
10	892,500	7,900	5,500		7,900	5,500		56,100	-	

Summary Results

Summary Results

• Little difference between concepts in long-term viability of current Supplemental water supply

Biological results not analyzed

Years with Otowi Index Supply (OIS) < 500,000 af problematic

Summary Results

- Anticipated Supplemental water supplies inadequate under any concept due to anticipation of years w/ OIS < 500,000 af
- Important to focus on saving water in all years to plan for management in years w/ OIS < 500,000 af
- Critical to plan for management in years w/ OIS < 500,000 af

Otowi Index Supply

